

FUROSTANOL GLYCOSIDES FROM *LILIUM CORDATUM*

KIMIKO NAKANO, KŌJI NISHIZAWA, IKUMI TAKEMOTO, KŌTARO MURAKAMI, YOSHIHISA TAKAISHI and TOSHIAKI TOMIMATSU

Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, Tokushima 770, Japan

(Revised received 26 October 1987)

Key Word Index—*Lilium cordatum*; Liliaceae; furostanol glycosides; acetyl derivative.

Abstract—Two furostanol glycosides were isolated from the methanolic extract of the petals of *Lilium cordatum*. Their structures were established as 26-*O*- β -D-glucopyranosyl-(25*R*)-22 ξ -methoxy-furost-5-en-3 β , 26-diol 3-*O*- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside and its 6'-*O*-acetyl derivative.

INTRODUCTION

In the previous paper [1], we reported two steroid alkaloid glycosides (cordatine A and B) from the petals of *Lilium cordatum* (Thunb.) Koidz. (Liliaceae), which was used as a folk medicine in a mountain region of Kochi prefecture. In addition to this, we obtained two furostanol glycosides (compounds 1 and 2), several flavonoids and phenolic glycosides from this petals. This paper deals with the structural elucidation of compounds 1 and 2.

RESULTS AND DISCUSSION

The fractions previously obtained from the methanolic extract of the petals of *L. cordatum* were rechromatographed on silica gel and Sephadex LH-20 to afford compounds 1 and 2, which exhibited no spiroketal absorptions in their IR spectra and were positive to Ehrlich reagent [2]. On boiling in aqueous acetone, 1 and 2 were converted to polar spots on TLC, while on boiling in methanol these were reversed. Both compounds showed three anomeric carbon signals and a methoxyl signal in the ^{13}C and ^1H NMR spectra. These results indicated 1 and 2 to be 22-methoxy furostanol glycosides and the more polar compounds (on TLC) to be the 22-hydroxy derivatives. It seems likely that the corresponding 22-hydroxy derivatives, existed in nature and, that they were methylated when the plant material was extracted with methanol [3].

The FAB-MS spectra of compounds 1 and 2 showed $[\text{M} + \text{Na}]^+$ at m/z 939 and 981, respectively. On hydrolysis with 2 N HCl-MeOH, both compounds yielded diosgenin together with glucose and rhamnose. Enzymic hydrolysis of 1 and 2 with almond emulsin gave D-glucose and the spirostanol glycosides 3 and 4 identified by TLC and IR [4]. Methylation of compound 3 by Hakomori's method [5] afforded the permethylate, which on methanolysis yielded methyl 2,3,4-tri-*O*-methyl L-rhamnopyranoside and methyl 3,4,6-tri-*O*-methyl-D-glucopyranoside. Based on the above data, 3 was assumed to be prosapogenin A [6, 7] of dioscin and this was confirmed by direct comparison with an authentic sample. Accordingly, the structure of 1 was elucidated as

26-*O*- β -D-glucopyranosyl (25*R*)-22 ξ -methoxy-furost-5-en-3 β , 26-diol 3-*O*- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside.

The ^1H and ^{13}C NMR spectra of 2 and 4 displayed signals at δ 1.97 (3H, s) and 20.7 (q) and 170.9 (s) assignable to an acetoxy group. Saponification of 4 afforded a product which was identified with 3 (prosapogenin A of dioscin). A comparative study of the ^{13}C NMR spectra of 3 and 4 allowed the assignment of the acetyl group. Thus the signals due to glucose C-6' and C-5' were shifted [8, 9] by +1.8 and -3.1 ppm, respectively, indicating that the acetyl group was linked to glucose C-6'. Therefore, compound 2 could be defined as 26-*O*- β -D-glucopyranosyl-(25*R*)-22 ξ -methoxy-furost-5-en-3 β , 26-diol 3-*O*- α -L-rhamnopyranosyl-(1 \rightarrow 2)-(6'-*O*-acetyl)- β -D-glucopyranoside.

EXPERIMENTAL

Mps: uncorr.; FAB- and EIMS: JEOL JMS D-300; ^1H and ^{13}C NMR: JEOL FX-200, $\text{C}_5\text{D}_5\text{N}$ with TMS as an internal standard; CC: silica gel (Merck 60); TLC: Kiesel gel 60 F₂₅₄ (Merck); The spots on TLC were detected by spraying 10% H_2SO_4 and Ehrlich reagent followed by heating. GLC: Shimadzu GC-6A, FID, glass column (3 mm \times 2 m) neopentylglycol succinate, N_2 gas a carrier gas, initial 130° programme at 4°/min to final 190°.

Isolation of saponins. The saponin fraction which had been previously obtained [1] by CC of the MeOH extract of the petals of *L. cordatum*, was rechromatographed over Sephadex LH-20 and silica gel to afford compounds 1 (442 mg) and 2 (43 mg).

Compound 1. Amorphous, $[\alpha]_D^{26} -47.1$ (MeOH; c 0.96). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3400 (OH), no spiroketal side chain. Ehrlich reagent: positive. FABMS m/z : 939 $[\text{M} + \text{Na}]^+$, EIMS m/z : 576, 414, 396, 139 (base peak). R_f 0.27 (on TLC, $\text{CHCl}_3\text{-MeOH-H}_2\text{O}$; 14:6:1) 0.19 (on boiling aq. Me_2CO). ^1H NMR: 3.28 (OMe). ^{13}C NMR:

aglycone; 37.5, 30.1, 77.9^{a*}, 39.0, 140.9, 121.6, 32.1, 31.7, 50.3, 37.1, 21.0, 39.7, 40.4, 56.6, 32.3, 81.3, 64.1, 16.2, 19.4, 40.7, 16.2, 112.6, 30.7, 28.1, 34.2, 75.0, 17.1 (C-1-C-27); 47.2 (OMe); sugar moiety; 100.3, 79.5, 77.8^a, 71.8, 78.1^a, 62.6^b (3-O-glc C-1'-C-6'), 101.9, 72.4^c, 72.7^c, 74.0, 69.3, 18.6 (2'-O-rha C-1''-C-6''), 104.8, 75.0, 78.5^a, 71.7, 78.3^a, 62.8^b (26-O-glc C-1'''-C-6''').

Compound 2. Amorphous, $[\alpha]_D^{24} - 75.8^\circ$ (MeOH; *c* 0.91). IR $\nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3400 (OH), 1740 (C=O), no spiroketal side chain. Ehrlich reagt.: positive FABMS *m/z*: 981 [M+Na]⁺. *R*_f 0.38 (on TLC, $\text{CHCl}_3\text{-MeOH-H}_2\text{O}$, 14:6:1) 0.29 (on boiling in aq. Me_2CO). ¹H NMR: 1.97 (OAc), 3.27 (OMe). ¹³C NMR: aglycone; 37.6, 30.2, 77.7, 39.1, 140.9, 121.7, 32.2, 31.7, 50.4, 37.1, 21.1, 39.8, 40.8, 56.6, 32.3, 81.3, 64.2, 16.3, 19.4, 40.5, 16.2, 112.7, 30.8, 28.2, 34.2, 75.1, 17.1 (C-1-C-27); 47.3 (OMe); sugar moiety; 100.6, 79.2, 77.7, 71.4^a, 74.8, 64.5 (3-O-glc C-1'-C-6'), 102.0, 72.4^b, 72.7^b, 74.0, 69.4, 18.5 (2'-O-rha C-1''-C-6''), 104.8, 75.1, 78.5^c, 71.3^a, 78.3^a, 62.9 (26-O-glc C-1'''-C-6'''), 20.7, 170.7 (OAc).

Acid hydrolysis of 1 and 2. A soln of 1 (20 mg) in 2 N HCl-MeOH (5 ml) was refluxed for 2 hr, diluted with H_2O and extracted with CHCl_3 . The organic layer was evapd to give a residue, which was crystallized from MeOH to afford an aglycone, colourless needles (5 mg), mp 206–207°, $[\alpha]_D^{27} - 93.3^\circ$ (CHCl_3 ; *c* 0.6), identical with diosgenin. IR $\nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3350 (OH), 980, 920, 900, 860 (900 > 920, 25R spiroketal side chain). The aq. layer was neutralized, evapd and examined by TLC ($\text{CHCl}_3\text{-MeOH-H}_2\text{O}$; 4:1:0.1) to detect the respective methylsides of D-glucose (*R*_f 0.20) and L-rhamnose (*R*_f 0.40). The same hydrolysate was obtained from 2 by use of the same procedure.

Enzymic hydrolysis of 1 and 2. A mixture of 1 (100 mg) and almond emulsin (30 mg) in AcOH-NaOAc buffer (5 ml, pH 4.5) was incubated at 37° for 9 hr and evapd under red. pres. The residue was subjected to silica gel CC ($\text{CHCl}_3\text{-MeOH-H}_2\text{O}$; 90:10:1) to afford compound 3 (74 mg), colourless needles, mp 249–251°, $[\alpha]_D^{18} - 88.2^\circ$ (MeOH; *c* 1.19), IR $\nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3400 (OH), 980, 920, 900, 860 (900 > 920). ¹³C NMR: 37.5, 30.2, 77.9^a, 39.0, 140.9, 121.7, 32.2, 31.7, 50.3, 37.1, 21.1, 39.9, 40.5, 56.7, 32.3, 81.1, 62.9, 16.3, 19.4, 42.0, 15.0, 109.2, 31.9, 29.3, 30.6, 66.9, 17.3 (C-1-C-27); sugar moiety; 100.4, 79.5, 77.8^a, 71.8, 77.9^a, 62.7 (glc C-1'-C-6'), 101.9, 72.5^b, 72.8^b, 74.1, 69.4, 18.6 (rha C-1''-C-6''). It was identical with prosapogenin A of dioscin by direct comparison with an authentic sample (TLC *R*_f 0.33, $\text{CHCl}_3\text{-MeOH-H}_2\text{O}$; 40:10:1 and ¹³C NMR).

A mixture of 2 (23 mg) and almond emulsin (10 mg) in H_2O (8 ml) was incubated at 40° overnight and evapd *in vacuo* to

dryness to give a residue. The MeOH-soluble portion was subjected to silica gel CC ($\text{CHCl}_3\text{-MeOH-H}_2\text{O}$; 9:1:0.1) to afford compound 4 (7 mg), amorphous, $[\alpha]_D^{27} - 25.0^\circ$ (MeOH; *c* 0.64), IR $\nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3400 (OH), 1730 (C=O), 980, 920, 900, 860 (900 > 920). *R*_f 0.48 ($\text{CHCl}_3\text{-MeOH-H}_2\text{O}$, 40:10:1). ¹³C NMR: 37.6, 29.9, 77.8, 39.0, 140.9, 121.7, 32.1, 31.7, 50.3, 37.1, 22.1, 39.9, 40.5, 56.6, 32.2, 81.1, 62.9, 16.3, 19.4, 42.0, 15.0, 109.3, 31.8, 29.2, 30.6, 66.9, 17.3 (C-1-C-27); sugar moiety; 100.6, 79.2, 78.6, 71.6, 74.8, 64.5 (glc C-1'-C-6'), 102.1, 72.4^a, 72.8^a, 74.0, 69.5, 18.6 (rha C-1''-C-6'), 20.7, 170.9 (OAc).

Methylation of 3. Compound 3 (70 mg) was methylated by the Hakomori method [5] and worked-up as usual. The methylate was obtained as a brown residue (92 mg). Hydrolysis with 2 N HCl-MeOH gave diosgenin and methyl 2,3,4-tri-O-methyl L-rhamnopyranoside and methyl 3,4,6-tri-O-methyl D-glucopyranoside identified by comparison with authentic samples by TLC (hexane-EtOAc, 2:3; benzene-Me₂CO, 5:1) and GLC.

Alkaline hydrolysis of 4. Compound 4 (3 mg) was saponified with 3% KOH-MeOH (0.5 ml) for 30 min at room temp. The soln was neutralized with 1 N HCl-MeOH and evapd to dryness *in vacuo*. The residue was identified with 3 by TLC ($\text{CHCl}_3\text{-MeOH-H}_2\text{O}$, 40:10:1, *R*_f 0.33).

REFERENCES

1. Nakano, K., Nishizawa, K., Murakami, K., Takaishi, Y. and Tomimatsu, T. (1987) *Phytochemistry* **26**, 301.
2. Kirosawa, S., Hutoh, M., Komori, T., Nohara, T., Hosokawa, I. and Kawasaki, T. (1968) *Chem. Pharm. Bull.* **16**, 1162.
3. Tschesche, R., Seidel, L., Sharma, S. C. and Wulff, G. (1972) *Chem. Ber.* **105**, 3397.
4. Rothman, E. S., Wall, M. E. and Eddy, C. R. (1952) *J. Am. Chem. Soc.* **74**, 4013.
5. Hakomori, S. (1964) *J. Biol. Chem.* **55**, 205.
6. Kawasaki, T. and Yamauchi, T. (1968) *Chem. Pharm. Bull.* **16**, 1070.
7. Nohara, T., Miyahara, K. and Kawasaki, T. (1975) *Chem. Pharm. Bull.* **23**, 872.
8. Ishii, H., Seo, S., Tori, K., Tozyo, T. and Yoshimura, Y. (1977) *Tetrahedron Letters* 1227.
9. Yamasaki, K., Kasai, R., Masaki, Y., Okihara, M., Tanaka, O., Oshio, H., Takagi, S., Yamaki, M., Masuda, K., Nonaka, G., Tsuboi, M. and Nishioka, I. (1977) *Tetrahedron Letters* 1231.

*¹³C NMR data: ^{a,b,c} Assignments are interchangeable between carbons marked with similar sign in a compound.